OXIDATIVE ADDITION OF 4,4,6-TRIMETHYL-1,3,2-DIOXABORINANE AND BENZO[1,3,2]DIOXABOROLE TO TRIS(TRIPHENYLPHOSPHINE)HALOGENORHODIUM

Hiromichi KONO*, Kazushi ITO

Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara Kanagawa 229 and Yoichiro NAGAI

Department of Chemistry, Gunma University, Kiryu, Gunma 376

Oxidative addition of 4,4,6-trimethyl-1,3,2-dioxaborinane and benzo[1,3,2]dioxaborole to $(Ph_3P)_3RhX$, where X= Cl or Br, gives σ -metalloborne which reacts with triethylsilane to afford quantitatively $Et_3SiRhHX(PPh_3)_2$.

σ-Metal-boron bond has been reported to be formed by the reaction of boron-halide 1,2,3 or boron hydride 3,4 with transition metal complexes including Ti, Mn, Re, Co, Ir, and Pt. Although $(Ph_3P)_3RhCl^5$, $(Ph_3P)_2Rh(CO)Cl^{6,7,8}$, $(C_2H_4)_2Rh(acac)^9$ and $[(C_2H_4)_2RhCl]_2^9$ as well as other transition metals 10 were found to react with 10

Treatment of $(Ph_3P)_3$ RhCl with excess of 4,4,6-trimethyl-1,3,2-dioxaborinane (at room temperature) followed by addition of ether, and filtration afforded colorless powder of (1), mp l15-l16°C(decomp.), Anal. Calcd. for $C_{42}H_{43}P_2O_2$ ClBRh: C, 63.78; H, 5.48; Cl, 4.48%. Found: C, 63.53; H, 5.52; Cl, 4.19%. The ir spectrum of (1) contained absorptions characteristic of triphenylphosphine and the 4,4,6-trimethyl-1,3,2-dioxaborinane moiety, and additional bands at 2080 cm⁻¹ assigned to ν (Rh-H) and at 286 cm⁻¹ assigned to ν (Rh-Cl).

H nmr spectrum(100 MHz,in CDCl₃) indicated a multiplet at τ 2.15-3.30 (phenyl protons), a multiplet at τ 5.60-5.99 (methine proton), a multiplet at τ 8.18-8.63 (methylene protons), and a complex mutliplet involving a singlet at τ 8.75 and a doublet at τ 8.79 (J= 3cps) (methyl protons) with an area ratio 32: 1: 2.1: 8.9. High field resonance measurement (from τ 10 to 40) did not

$$(Ph_3P)_3RhX + R \bigcirc B-H$$

$$X = C1$$

$$= Br$$

$$R = \bigcirc B-RhHX (PPh_3)_2$$

$$R = \bigcirc X = C1$$

$$2. R = \bigcirc X = Br$$

$$3. R = \bigcirc X = C1$$

$$4. R = \bigcirc X = Br$$

indicate any signal which is usually assignable to Rh-H^{5,11}. The hydride resonance of 2-[IrClH(CO)(PMe $_3$) $_2$]B $_5$ H $_8$ including σ -Ir-B bond was reported 3 to be observed at τ 3.1. Therefore we assumed that the Rh-H resonance could be masked by that of protons of triphenylphosphine.

With benzo[1,3,2]dioxaborole in benzene the corresponding rhodium-boron complex (3) was obtained. Bromo derivatives,(2) and (4), were analogously prepared from (Ph₃P)₃RhBr, and indicated less stability to air and light than (1) and (3), respectively. Physical properties of the rhodium-boron complexes were summarized in Table.

		Table.	Rhodium-boron	Complexes
Complex	M.P.		IR (c	m^{-1})
	°C	No. 2 mars.	ν(Rh-H)	ν(Rh-X)
1	115-116(6	lec.)	2080	286
2	103-104(lec.)	2080	284
3	131-132(d	lec.)	2120	298
4	134-135(6	lec.)	2125	298
				

Treatment of (1) and (2) with excess of ${\rm Et_3SiH}$ gave quantitatively ${\rm Et_3SiRhHX-(PPh_3)_2}^{12}$ which was reversely converted to (1) and (2) in the presence of excess of the dioxaborinane.

References

- 1. G. Schmid, W. Petz, W. Arloth, and H. Noth, Angew. Chem., Int. Ed., 6, 696(1967).
- 2. D. F. Gaines and T. V. Iorns, Inorg. Chem., $\underline{7}$, 1041(1968).
- 3. M. R. Churchill, J. J. Hackbarth, A. Davison, D. D. Traficante, and S. S. Wreford, J. Amer. Chem. Soc., 96, 4041(1974).
- 4. E. L. Hoel and M. F. Hawthorne, ibid., 95, 2712(1973).
- 5. T. E. Paxson and M. F. Hawthorne, ibid., 96, 4674(1974).
- 6. A. R. Siedle, J. Organometal. Chem. 90, 249(1975).
- 7. F. Klanberg, P. A. Wegner, G. W. Parshall, and E. L. Muttrties, Inorg. Chem., 7, 2072(1968).
- 8. R. L. Sneath and L. J. Todd, ibid., 12, 44(1973).
- 9. A. Davison, D. D. Traficante, and S. S. Wreford, J. Amer. Chem. Soc., <u>96</u>, 2802(1974).
- 10. M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, Jr., and P. A. Wergner, ibid., 90, 879(1968); F. R. Scholer and L. J. Todd, Preparative Inorg. React., 7, 1(1971); M. F. Hawthorne, Accounts Chem. Res., 1, 281 (1968); idem, Pure Appl. Chem., 29, 547(1972).
- 11. H. D. Kaesz and R. B. Sillant, Chem. Rev., 72, 231(1972).
- 12 R. N. Haszeldine, R. V. Parish, and D. J. Parry, J. Chem. Soc. A, 683(1969).

(Received August 21, 1975)